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Abstract
Results from Hopkinson split-bar, plate-impact, and cylinder deceleration experiments on

beryliium are compared with hydrodynamic computer code simulations.

increasing the beryllium work-hardening in the

agreement between the experiments and the calculations i1s achieved.

By substantially

Steinberg-Guinan constitutive model, excellent
A model to estimate

effective viscosity 1s also proposed and the resultant calculations are in reasonable
agreement with those derived from another model advanced by Asay, Chhabildas and Wise.
[(62.50.+p, Beryllium, Work-Hardening, Viscosity] '

Introduction

As part of a program to understand the
equation of staté of beryllium, three differ-
ent kinds of deformation experiments were per-
formed. These were Hopkinson split-bar com-
pression (uniaxial stress), plate-impact
(uniaxial strain), and cylinder deceleration
experiments (two-dimensional flow).

Previous papers [1,2] have described the
elastic-viscoplastic constitutive model 4in our
hydrodynamic computer codes. Work-hardening
is described by a function (1+g¢)™ with
Y (1+8c)" < ¥ . ¥ 1s the yleld
strength, subscript o refers to the Hugoniot
elastic 1imit, and subscript max to the maxi-
mum work-hardened strength at STP conditions.
¢ 1s the equivalent plastic strain, and B
and n are unique parameters for each material.
Our previous 1imited data for beryllium m-
plied that B=81 and n=0.22, but computer simu-
lations of the above experiments were poor
when these parameters were used.

One purpose of this paper 1s to show that
" with new work-hardening parameters, our hydro-
dynamic codes can simulate these experiments

very well. A second purpose 1s to estimate

solid viscosity using the information con-
tained in the constitutive model and the
additional relation that the effective
viscosity, v, 1s equal to 26t where G 1is
shear modulus and T 1s a time constant.
Work-Hardening

Hopkinson split-bar experiments yield what
is probably the least ambiguous, high-strain-
rate work-hardening data. Breithaupt [3] has
performed a series of such experiments with
strain rates reaching 2500 'T. The data are
shown as true stress - true strain in Fig. 1.
They can be fit very well with g=26 and n=0.78.
The low strain data can be extrapolated to
zero strain and the stress at this point is in
excellent agreement with the Hugoniot elastic
1imit data of Christman and Feistmann [4].

The work-hardening maximum of 1.31 GPa 1s also
in good agreement with the work of Reicker,
Towle and Rooney [5] who got 1.23 GPa by a
different technique which slightly
underestimates Ymax [6].

Breithaupt's results also compare favor-
ably with the data of Green and Schierloh [7],
and Nicholas and Sever [8] on type S-200
beryl1ium. Unfortunately,these data were not



found until after our work was completed.

_ Asay, Chhabiidas and Wise performed plate-
impact experiments with initial loading
stresses between 6.4 and 34.4 GPa [9].
velocimeter recorded the veloeity of a
beryl1ium-LiF interface.

Fig. 2 shows the experimental interface
velocity vs time wave profile for a typical
shock and release experiment. In the same
figure 1s the hydrodynamic code simulation.
Using B, n and Ymax as determined from the
Hopkinson split-bar experiments, one can see
that the simulation agrees very well with the
data [10]. A calculational comparison has
also been made using the old work-hardening
parameters. In this case, 1t 1s easy to see
that the release 1s not calculated correctly.

Fig. 3 1s a plot of yield strength vs.
pressure for all the experiments.

Honodel [11] did a series of experiments
where he impacted beryllium cylinders against
a "stone-wall®. For one of these experiments
the post-shot sample was sectioned and photo-
graphed to clearly delineate 1ts shape.
Measurements of the shape were made and this
experimental profile 1s shown in Fig. 4.

Two-dimensional hydrodynamic calculations
were done using the old and new work-hardening
models. The results of these calculations are
shown in Fig. 4. 1In the fracture-free zone,
the biggest difference between the new model
and the experimental data 1s ~ 35 um. This
discrepancy can be accounted for in the uncer-
tainty in measuring the post-shot profile.
However, 1n the fracture zone, the good agree-
ment between the data and the new model calcu-
lation 1s probably fortuitous.

A

Estimating Solid Viscosity
In Ref. 1, G 1s given as G°(1+An'1/3P-BAT)

where Go 1s the initial shear modulus, n
s compression, P is pressure, AT is the
change in temperature and A and B are material
constants. From Ref. 2, t can be described,
in an equilibrium state behind the shock front,
by Cexp[D/T) where C and D are material con-
stants. The values of A, B and D are deter-
mined a priori from other data, but C was
found by normalizing a computer simulation to
the stress-loading part of one of the
Jow-pressure wave-profiles in Ref. 4.
Additional computer simulations, similar
to those shown in Fig. 2, were then done for
all the data of Wise et al. [9] and Christman
and Feistmann [4] and the values of 6 and T
determined. 1In Fig. 5, v=2Gt 1s plotted
as a function of the measured value of maximum
strain rate, ép. For peak strain rates in
excess of ~ 601:.s'1 (peak stress about
25 GPa) the computer simulations become affec-
ted by the artificial viscosity, Q. A plot of
Qmax At, where At 1s a typical time step
in the calculation, is also shown in Fig. 5.
Asay, Chhabildas and Wise [9] have also
estimated an effective viscosity for beryllium.
They derive a model where v varies as E'I/Z
For shocks greater than 25 GPa, the experi-
mental resolution 1imits their ability to mea-
sure ép. However, within range 3 < ép < 60,
their model agrees well with their data.
These results are also shown in Fig. 5.
Comparing the results from the two models;
we see that they can differ by more than an
order of magnitude. However in the range of
3 < ép < 60, the agreement is better than



a factor of 4. Walters [12] in his review of

viscosity, notes that differences of 2 to 3

orders of magnitude in estimating effecttve

viscosity 1s not unknown. Consequently, the

agreement between these two models seems more

striking than their disagreement.
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Interface velocity (mm/us)

FIGURE 2 -~ Interface Qelocity vs.
. time éBeak stress =
34.4 GPa)
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FIGURE 3 - Yield strength vs. peak
initial pressure
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Effective viscosity (Pa-s)

FIGURE 5 - Effective viscosity vs.
peak strain rate
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